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Abstract. The initial value problem for Einstein’s field equations with positive cos-
mological constant is analysed where data are prescribed at past conformal infinity.
It is found that the data on past conformal infinity are given,up to arbitrary confor-
mal rescalings, by a freely specifyble Riemannian metric and a trace-free, symmetric
tensorfield of valence two, which satisfies a divergence equation. For each initial
data set exists a unique (semi-global) past asymptotically simple solution of Ein-
stein s equations. The case is discussed where in such a space-time exists a Killing
vector field with a time-like trajectory which approaches a point p on conformal
infinity. It is shown that in a neighbourhood of the trajectory near p the space-
-time is conformally flat.

1. INTRODUCTION

In this paper will be shown the existence of a large class of solutions of Ein-
stein’s field equations (2.1) with positive cosmological constant A, which are
asymptotically simple in the past. These solutions are semiglobal in the sense
that all null geodesics are past complete. The existence proof is based on the
properties of the regular conformal field equations [7, 8, 9]. They allow to
characterize the solutions by their Cauchy data on past conformal infinity % ~,
which can be thought of as the set of past endopoints of the null geodesics. In
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the conformally extended space-time £ ~ forms a smooth space-like hypersurface.
It turns out that on past conformal infinity the constraints become particularly
easy to solve and one can give a simple and complete description of all initial
data sets (based on conformal infinity) arising from solutions of Einstein’s equa-
tions which are asymptotically simple (Lemma (3.1)). Two facts are remarkable
here. There is no analogue of the Hamiltonian constraint. Consequently the
(orientable) manifold # ~ and the Riemannian metric implied on it by the con-
formal field are completely arbitrary (which appears to have been noticed by
Starobinsky before [2]). Nevertheless, since for the physical field only the con-
formal equivalence class of the conformal initial data on .# ~ is relevant, the
freedom to prescribe data on .# " is essentially the same as the freedom to describe
data on a space-like hypersurface in the standard Cauchy problem for Einstein’s
field equations. This suggests that being weakly asymptotically simple, i.e. posses-
sing «patches of a smooth conformal infinity», is a rather general feature of
solutions of Einstein’s field equation with A > 0.

The problem of showing existence of solutions of Einstein’s equations with
A > 0 for data given on past conformal infinity is similar to the «pure radiation
problem» [10] where data for Einstein’s equations with A = 0 are prescribed on
a «regular cone with complete generators» representing past conformal infinity.
However, the former case is much easier to deal with since here the initial surface
is smooth and space-like. Thus the existence of solutions of the symmetric
hyperbolic propagation equations implied by the regular conformal field equa-
tions can be inferred from well-known theorems [8, 16]. This immediately
implies the existence of solutions of Einstein’s field equations (2.1) which ap-
proach the data given on past conformal infinity (Theorem (3.2)).

In the last chapter a consequence of the existence of certain symmetries in
the type of space-time is discussed, whose existence has been established before.
It is shown (Theorem (4.1)) if a solution of Einstein’s equations (2.1) (A > 0)
which is weakly asymptotically simple admits a Killing vector field with a time-
-like integral curve which approaches a point p on # *, then the metric implied on
a certain neighbourhood of p in J7(p), the casual past of p in the conformally
extended space-time, is conformally flat. This fact, which has been conjectured
and discussed (partly under strong conditions on the space-time) in [1, 2, 3, 13]
is established here by a straightforward application of the techniques used in
chapters 2, 3 and in [10].

The results presented here allow generalizations. In particular Lemma (3.1),
Theorem (3.2), and Theorem (4.1) can be extended to the case of the coupled
Einstein- Yang-Mills equations. Furthermore it may be pointed out that the
regular conformal field equations may be used in a similar way to investigate
the existence of asymptotically simple space-times satisfying Einstein’s equations
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(2.1) with A<O0. In that case one would have to discuss a mixed problem for
the regular conformal field equations where data are given on a space-like hyper-
surface and on the time-like surface representing conformal infinity [20].

2. THE CONFORMAL STRUCTURE OF THE EQUATIONS AND OF THE
FIELDS

In the next chapter will be shown the existence of solutions of Einstein’s
field equations with positive cosmological constant

(2.1) Ric [g] = Ag

for the «physical metric» 2. In the existence theorem will be stated weak differen-
tiability conditions on the data and the fields. In this chapter, however, and in
chapter 4 will be assumed for convenience that all fields are of class C™.

The existence proof will be based on the properties of the «regular conformal
field equations» [7, 8, 9]. These equations, which are derived from Einstein’s
equations by exploiting the «conformal structure» of the latter, constitute a
slight generalization of (2.1) since they are regular and make sense in regions
where Einstein’s equations are no longer defined. If € is a positive function,
called the «conformal factor» in the following, then one can define a «non-
-physical metric»

(2.2) g,= ngw

and (2.1) may be expressed equivalently by the «conformal field equations»

(2.3) Ric[Q272g] = A Q 2g.

Denote by V the covariant Levi-Civita derivate operator defined by 8y, and
0

letek=e;c‘ ZE‘;(where ik, 1,...=0,1,...,4;u, v, N, ...=0,1,...,4 and

the summation convention is assumed) be an orthonormal frame for g

(2.4) gley. ) =g; = diag (=1, 1,1, 1)

given with respect to some coordinate system x*. In the following all equations
will be written in a frame formalism and expressed with respect to the frame e, .
The connection coefficients 7ifk are then defined by the directional covariant
derivatives of the vector fields e,

(2.5) Tt = Vie = Ve,.ek Y8 + 1}8c = 0

Besides £2, e,t‘, 71’k the fields which are of interest in the following are:
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. . 1
— the differential Z, = Q efof Qands = 7 vV, VeQ,

.. 1
— the Ricci scalar R, the traceless part 2 8y =Ri]. — Z Rg‘.}. of the Ricci

tensor R i derived from &,

— the rescaled Weyl tensor djikl = Q”IC;H where C]?k, is the Weyl tensor of

8,

For these fields can be derived from (2.1) respectively (2.3) the following
«regular conformal field equations» for the unknown

— (oM ~J
u = (e, Vi S 2y, 8,8, dyy)

(2.6) e,‘c‘, Ve]."-— el.‘,‘v €= (7;1: — 7,‘q.) e/
Vil = Vg F Ve VT — Vi Y =Y O =) =
2.7 |
= de’kl + 2(g'[ks”j —g”ks”’) + Z R gfkg”].
(2.8) V=32,
2.9 ViZ,=—Qs; +5g,
1 1

(2.10) Vis=—Z/s;,— —RZ,— — QV,R

12 24

_ 1
— 1

.11 Vks,]. —Vlski =3z, djkl — E gj[,Vk]R
2.12) Vidj, =0

These equations are obtained in the following way. Equ. (2.6) is the first structure
equation with the condition that the torsion vanish, while equ. (2.7) is the second
structure equation where on the right the curvature tensor is expressed in terms of
its irreducible parts. Equ. (2.9) is the trace-free part of (2.3). Equ. (2.12) is
obtained by rewriting the Bianchi-identity for the «physical Weyl-tensory,
ﬁﬂ 5;\‘Vp = 0, which is implied by (2.1), in terms of the non-physical quantities.
Then equ. (2.11) is derived from the Bianchi identity for the non-physical curva-
ture tensor by using (2.12). Finally, equ. (2.10) is an integrability condition
derived form (2.9) and the other equations [7].

There are several aspects of the regular conformal field equations which de-
serve further discussion.

Since the unknown u does not comprise the Ricci scalar R the system appears
to be underdetermined. However, the relation (2.2) and consequently equations
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(2.6) -(2.12) are invariant under rescalings of the type
(2.13) (2, 8) > (2, ) = (69, 0%g)

with a positive function 8, if all quantities given by « and also R are transformed
appropriately (see (3.16)). This introduces, besides the possibility to choose
coordinates and frame fields arbitrarily, an additional «gauge-freedom». It allows
to determine near a suitable initial surface the conformal factor in such a way
that the Ricci scalar acquires there any preassigned functional dependance R =
= R(x*") on the coordinates x* [9]. Thus the Ricci scalar R may in (2.6) - (2.12)
be considered as an arbitrarily given function on JR* and the system (2.6)-(2.12)
as an overdetermined system of partial differential equations for the unknown u.

Let now u be a smooth solution of (2.6) - (2.12) (satisfying det (e,‘c‘) #0ona
connected manifold M and denote by M the open submanifold { x € M/Q2(x) > 0}
of M. On M can be defined from u a metric g,, be requiring £, (2~ %g"*¢"e) =
=6 ;‘ In the regular conformal field equations the cosmological constant does not
appear since the trace of (2.3) has not been used in the derivation of (2.6) - (2.12).
Therefore one may wonder, whether the metric g, will be a solution of Einstein’s
equations (2.1). By taking the differential of the quantity

1
2.19) AN =6Qs—3% 37 + " Q2R

and using that u is given by a solution of (2.6) - (2.12) one finds that A’ = const
on each connected component of M. Identifying the cosmological constant A
with A’, equation (2.14) is just the trace of (2.3). Therefore one arrives at the
fact: Any solution of Einstein’s equations (2.1) implies a solution of the regular
conformal field equations (2.6)-(2.12). Any solution of the regular conformal
field equations on a manifold M provides on the submanifold M ={xeM/Q(x)>
> 0} a solution of Einstein’s equations, where the cosmological constant is obtain-
ed as a constant of integration which may be fixed on a suitable initial surface.
The regular conformal field equations generalize Einstein’s equations since they
are defined and regular for all values of the conformal factor, in particular at
points where it vanishes.

It is of course the latter property which motivated the introduction of the com-
plicated system (2.6) - (2.12) as well as its name. Though it is already surprising
that Einstein’s equations allow such a generalization, the system (2.6) -(2.12)
can only considered us useful if it allows to draw conclusions about it manifold
of solutions. For this it is decisive that one can show: The regular conformal field
equations imply symmetric hyperbolic systems of propagation equations.

There are various ways of extracting such propagation equations from (2.6) -
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(2.12), depending on the choice of coordinates, frame field and conformal factor.
This has been discussed in [7, 8] and in all possible generality in [9]. Initial value
problems for equs. (2.6) - (2.12) may thus be reduced to initial value problems
for symmetric hyperbolic systems. These systems have been studied extensively
and very general existence results are available [6, 11, 16]. It may be mentioned
finally, that it is possible to generalize the derivation given above, e.g. to obtain
for the coupled Einstein-Yang-Mills equations regular conformal field equations
which also imply symmetric hyperbolic propagation equations.

The conformal structure of Einstein’s equations exhibited by the properties of
the regular conformal field equations exactly match with the characterization of
the asymptotic behaviour of gravitational tields in terms of conditions on their
global conformal structure [18]. The space-times which are of interest in the
following are described in the

DEFINITION (2.1). A connected, time- and space-orientable strongly causal
space-time (M, %) will be called asymptotically simple in the past, if there exists
a manifold M with boundary # ~(C M), a smooth Lorentz metric g and a func-
tion §2 on M, and an embedding ¢ M — M, by means of which M is identified
with its image ¢ (M) = M\ .# ~ such that

i) Q>00nﬂ7,ﬂ=00nﬂ",dﬂ¢00n]‘,

i) g= Q2§on1\71,

iii) every null geodesic in (1l7i , ) has (only) a past endpoint on #~.

The space-time (117, £) will be called asymptotically simple and de Sitter in the
past if it satisfies in addition to (i) - (ii)

iv) on M Einstein’s equations Ric [g] = A g hold with a cosmological constant
A>0.

These requirements have, among others, the following consequences [18].
All null geodesics of (]VI, £), which as point sets coincide with null geodesics in
(M, g), are past complete. The gradient of 2 is timelike on £~ (see equ. (2.14)).
Thus the surface # ~, called «past conformal infinity» in the following, is a
space-like hypersurface, which because of condition (iii) is in fact a Cauchy
surface for the conformal extension (M, g) of (117,?) [12]. The physical Weyl
tensor éfm obtained from g~up, which coincides on M with the Weyl tensor C‘ﬁ‘)\ﬂ
for g, 8oes to zero along any curve in M which approaches £ . (See equ. (2.12)).
Because of this property it may be assumed that the rescaled Weyl tensor
Q1 C~:M extends to a smooth tensorfield on M.

In a similar way as above one can define space-times which are asymptotically
simple and de Sitter in the future with future conformal infinity .# * or which



EXISTENCE AND STRUCTURE OF PAST, ETC. 107

satisfy these conditions in the past as well as in the future. The prototype of all
these cases in de Sitter space. It can as a whole be conformally embedded into
the Einstein cosmos which is given by the manifold IR x §3 with the line element

(2.15) ds?=—dr?+ dw?

with £ € R and dw? the standard line element on S3. If one defines the function
7() by

T T
sinht=1gt, —_—<t<l—
2 2
and the conformal factor by
i 4
) = cost, —_—Ktr g —
2 2
~ T T 3. . .
then one hason M =|— 5 -2- x §° in terms of the coordinate 7 the de Sitter
line element given by
(2.16) d3?=Q 2ds?=—d72 + cosh?7dw?.

Thus the conformally extended space-time (M, g) is given by the closure of M
in the Einstein cosmos together with the line element (2.15). The surfaces £~ =

T
=(l=— —
-5

The purpose of condition (iii) is to make sure that nothing of .# ~is left out in

resp. £t =

m
= ? frepresent past resp. future conformal infinity.

the construction of the conformally extended space-time. In the case that the
manifold M has a compact Cauchy surface S (which appears to be a natural
assumption for a solution of equ. (2.1) with A > 0, since there seem to be no
natural conditions on the behaviour of the field «at spatial infinity») such that
Mis diffeomorphic to IR x S, condition (iii) allows to conclude that £ ~ is diffeo-
morphic to S and the conformally extended space-time is diffeomorphic to
[0, oo[ x S. However there are space-time, called «weakly asymptotically simple
and de Sitter» [19], for which the conditions (i, ii, iv) can be satisfied but (iii)
does not hold because some null geodesics run into singualrities. Thus one can
only attach certain «pieces of a smooth conformal infinity» to the original
space-time. An example for this is provided by the Schwarzschild - de Sitter
space-time and its analytic extensions which have been discussed in [13].



108 H. FRIEDRICH

3. EXISTENCE AND CHARACTERIZATION OF SPACE-TIMES WHICH ARE
ASYMPTOTICALLY SIMPLE AND DE SITTER IN THE PAST OR IN THE
FUTURE

In the following will be investigated the set of space-times satisfying the
conditions (i) - (iv) of definition (2.1) by analysing a Cauchy problem for the
regular conformal field equations (2.6) - (2.12), where data are given on a space-
-like hypersurface S in the conformally extended space-time M. For this purpose
suitable initial data sets, i.e. solutions of the constraint equations which are
implied on space-like hypersurfaces by the regular conformal field equations,
have to be determined.

Assume that the conformal factor £ has been fixed somehow. Let the coordi-
nates x°, x* and the frame vector fields € e, (in this chapter indices o, 8, . . .,
a, b,... will take values 1, 2, 3 and the summation convention will be assumed
for these indices) satisfying (2.4) be such that § ={x%=0}, e, is the future
directed unit normal to S so that the x® provide coordinates on S and ¢, an
orthonormal frame for the interior metric implied on S. To extend the frame and
the coordinates into a neighbourhood of § it is assumed furthermore that the
frame e, is parallely propagated in the direction of e, x9is a parameter of the
integral curves of e and the x* are dragged along with e

_ By _ SH
Voek—O, x,veo_ﬁ0 on M near S.

The coordinates x* are thus Gauss coordinates based on S. One finds

0 0
- 0° ea=e:
9x0 ax*

€0
'y(’;k =0; 7;?1; = 7:0 =X, i the second fundamental form on S.

Let D denote the covariant Levi-Civita derivative operator implied on S by the
interior metric induced on S by g, Then one has

— — C
D¢, = Deaeb =Yg €0

with the v’s given by (2.5) and the torsion 3tfc for D vanishes. The curvature
tensor, the Ricci tensor, and the Ricci scalar derived from D will be denoted
by 3rgcd,, 3rab, 3y respectively. The Bach tensor on S is then given by

1
3 — 3 o 3
bcab_D[a rb]c 4 D[a rgb]c"

To obtain simple expressions for the constraint equations it is convenient to
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introduce the notation

=3, §,=8,, d,=d d,,=d

a0b O’ abe albe*
These fields on S have the algebraic properties
a __ — — —_— ——
Sa = Sop dab - dba’ daa =0, dabc - dacb’ d[abc] =0

dnac = O’ deabc = 2(ge[b dc]a + a[cdb]e)

and contain all the information on Sik and di].kl.

The constraint equations implied on § by equs. (2.6) - (2.12) are given now by

1

3 —

Tepe =" 2X[pX g, + R dgy + P Rgp8y,+
(3.1 . e

+ 2080500 8apSe))
(3‘2) Dbxca _Dcxba =8 dabc + 2ga[bscl
(3.3) DaQ = Ea
(3.9 Da2b=2xab—ﬂsab+sgab
(3.5) DZI=32%,—%Qs,
. 1 1
(3.6) Das=2sa——}3 Seg™ 1—2—R2a— 2—49DaR
(3.7 D;s,—D,s, = 2x[a‘sblc+}3‘dwb
. 1

(3’8) Dasbc_Dbsac = 2xclasbl+ chab +2 decab + E gc[an]R
(3.9) Dadgc= 2delbxf,]
(3.10) D dp=xd,,

Furthermore (2.14) gives the equation

1
(3.11) A=69s+322-32aza+ZQ2R

which is implied on § also by (3.1) - (3.10).

As the initial surface is now chosen the surface S = .# ~. Then the constraint
equations (3.1) - (3.11) simplify enormously since £ vanishes. An initial data
set may then the obtained in the following way:
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LEMMA (3.1). Let (S, h) be a connected orientable 3-dimensional Riemannian
space with manifold S and metric h tensor on S. Let R and 7 be real-valued
functions on S and A a positive number. Furthermore let daa be a symmetric
tracefree covariant tensor field on S datisfying

(3.12) D,d;=0

where D denotes the covariant Levi-Civita derivative operator defined by h.
From these fields an initial data set

— (et ~F
uy,= (e, v, 2, 2, s, 8 diik,) onS

for the regular conformal field equations (2.6)-(2.12) which satisfies (2.14)
with A = A' on S is determined as follows.

Let ¢ =c*
a a o
ox;

ordinate system x on S such that

be a (local) frame given with respect to some (local) co-

h(c, c,) =g, = diag (1, 1, 1)
and let Fa’; be the connection coefficients satisfying
= _nd
Dycy =D, cy=Tp¢y-

Furthermore denote by 3R ;, *R, *B_,, the Ricci-tensor, the Ricci scalar and the
Bach tensor obtained from h. Then U, is given by

(3.13) el =288 ed=0, er=c2 =T}

1 1/2
=0, Z =0,s=‘r(; A)

(3.14) | V2
E=(~3—-A) ’ abz—Tgab’ sa=DaT
3 ! 3 ! ! 2
sab= ab'—ab(_ R EJR_ET)
(3.15) 1 —*/23
daObc'__( ’1—5 A Babc
a.f

daObO = dcha Cb :

Proof. Equs. (3.13) follow from the preceding choice of the coordinates and the
frame. Assuming that the cosmological constant is given by A, that @ =0 on §
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1 1/2
and setting s = 1(3 A) , equs. (3.14) are a consequence of and imply equs.

(3.3), (3.11), (3.4), and (3.6). The equs. (3.2), (3.5), (3.7) are then satisfied
identically. Using the fact that in a 3-dimensional space the curvature tensor
is determined by the Ricci tensor via the idenity

3 _ 3 3 3
Tabed = 2801 Tayp + 8p1a " T + 77 Bara€epp s

the remaining constraints can be written equivalently

1
(3.1) 3rab=sab+gab(s§+ ER—212)
4 — -13
(3.8) d,=22"1%_,
(3'9') Dcd;b =0
(3.10") D.d¢=0.

Hence (3.1') and (3.8") may be solved by using them as defining equations for

s, and d_, . Then (3.9) is just the differential identity satisfied by the Bach
tensor. Finally, (3.10") is equivalent to (3.12). (]
Remarks

i) The functions (3.13) depend of course on the specific choice of the co-
ordinates and the frame. The present choice gives immediately the appropriate
data for the symmetric hyperbolic equations as derived from (2.6) -(2.12) in
[8] for the case of a conformal factor such that R = Q near the initial surface.
Important here is the way the metric & with h%f = g% e elf and the tensorial
quantities (3.14), (3.15) are determined, which is independent of any choice
of gauge.

ii) It is remarkable that the data on past conformal infinity for any space-
-time which is (weakly) asymptotically simple and de Sitter may be obtained
as described in Lemma (3.1). While in the standard Cauchy problem for Einstein’s
equations the Hamiltonian constraint leads to an elliptic equation, an analogous
equation does not occur here. The only differential relation is equation (3.12),
which may be considered as an analogue of the momentum constraint.

iii) If the coupled Einstein-Yang-Mills equations are transformed into a
regular conformal system, the initial data u,on #~ for the geometrical quantities
can be, with the exception of daﬁ’ determined in the same way as above. If then
a solution of the constraints implied by the Yang-Mills equations on .# ~ has been
found, an equation for da‘3 has to be solved which is of the form (3.12) with a
right member which is a quadratic expression of the Yang-Mills fields.
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iv) At first sight it may appear that there is too much freedom here to specify
initial data for the gravitational tield [5]. This, however, is not the case. Under
the rescaling (2.13) the Ricci scalar R=R [g} is transformed into the Ricci scalar
R = R[0%g] according to

1 A
(3.16) AR E(OR—O-”R).

As mentioned in the beginning this allows to choose the Ricci scalar R freely
near the initial surface. When equ. (3.16) is then solved for the function § there
is still the freedom to specify a positive function ¢ and an arbitrary function,
the normal derivative V0, on the initial surface. On the surface # ~. where
€2 = 0, the quantity 7 = 2~ 1§ transforms under (2.13) according to

(3.17) 027 =07—V,0.

This shows that for arbitrarily given positive 6 the function VO() can be chosen
such that 7 takes any preassigned value on the initial surface. In particular one
may choose T=0, R=0 in (3.14), (3.15). There remains the freedom to choose
6 on S. If the fields haﬁ’ daB on S are rescaled in the form

o g2 ' 7 —p-1
(3.18) hog=hy,=0%h,, 'd~d, =0"'d,

equation (3.12) will again be satisfied by the transformed fields. From handd
may be derived an initial data set 120 as described in Lemma (3.1) with R, 7 given
arbitrarily and with the same constant A. The initial data sets Ugs ﬁo will then be
called conformally equivalent. As stated in Theorem (3.2) they will determine
isometric solutions E#V of Einstein’s equations (2.1).

Let (S, uo) be an initial data set as determined in Lemma (3.1) where the mani-
fold S is now assumed to be compact. A manifold M with boundary .# ~ together
with a collection u = (ef, . .. ’di/'kl) of fields on M will be called a solution of
the initial value problem for the regular conformal field equations with initial
data set (S, uo), if M is diffeomorphic to S x [0, T for some T > 0, u is a solution
of equations (2.6) - (2.12) on M, the function £ is positive on M except on the
boundary £ ~, and there exists an embedding of S into M by which § is identified
with the boundary # ~ of M in such a way that the fields given by u coincide
(possibly after a rotation of the frame) with the fields implied by u on .# "

In this formulation it has been assumed for convenience, that the frame ¢,
introduced on S in Lemma (3.1) and consequently the frame e, is given globally
on S resp. M. The definition has to be generalized in an obvious way if more than
one frame is involved in the construction of the initial data set.
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If k is an integer > 0, let H*(S) resp. H*(M) denote L2-type Sobolev spaces on
S resp. on M. Here Hk(S) is defined with respect to the bilinear product of tensor
fields of the same type and the measure implied on S by some fixed Riemannian
metric and H*¥(M) is defined in a similar way by using the product metric implied
on S x [0, T] by the given metric on S and the standard metric on R.

THEOREM (3 .2). Suppose k > 4 and (S, uo) is an initial data set as determined in
Lemma (3.1) with a smooth and compact manifold S and with fields provided
by u,on S, which are of class HK(S). Then there exists a unique (up to questions
of extensibility) solution (M,u) of the initial value problem for the regular
conformal field equations (2.6) -(2.12) with initial data (S,u,), such that the
fields supplied by u are of class H*(M).

In particular the conformal factor S and the metric g,, provided by u are of
class H*(M). The space-time with manifold M=M \.# ~and metric §W =02 g,
is a solution of Einstein’s field equations

Ric [g]l=Ag (with A> 0as given by uo)

which is past asymptotically simple.

The isometry class of the space-time (1171,§W) determined from (S, u,) is not
changed if the initial data set (S, u,) is replaced by a conformally equivalent
initial data set.

Remarks

i) As seen from Lemma (3.1) for the fields given by u, to be of class H¥ it is
sufficient that the metric 4 is of class H* * 3, the field d and the function R are of
class H* and the function 7 is of class H** 1. No attempt has been made here to
formulate the strongest possible results regarding differentiability (see [6]).

ii) The assumption that the manifold S be compact has been made here to
simplify the statement of the theorem. For more general situations, correspond-
ing to space-times which may form a part of a weakly asymptotically simple
space-time, a similar existence theorem can be formulated which involves local
Sobolev spaces.

iii) It is a remarkable fact that all space-times satisfying the conditions of
definition (2.1) can be obtained in a similar way as described in Lemma (3.1)
and Theorem (3.2) and that the degree of freedom to specify initial data at past
(or future) conformal infinity is essentially the same as in the case of the standard
Cauchy problem for Einstein’s field equations.

Proof of Theorem (3.1). Using the standard method of localization for symmetric
hyperbolic systems, the existence part follows by taking a finite covering of S by
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coordinate patches which carry an orthonormal frame for the metric # and by
constructing local solutions. Applying a general theorem of Kato [16] on the
Cauchy problem for symmetric hyperbolic systems to the symmetric hyperbolic
propagation equations implied by equations (2.6) - (2.12) the existence of local
solutions can be established. This has been worked out in detail in [8] where it
also has been shown that a solution of the symmetric hyperbolic propagation
equations which solves the constraint equations on the initial surface is in fact
a solution of (2.6) - (2.12). That the isometry class of the physical space-time
(1171, g) does not depend on which element of the conformal equivalence class of
initial data sets has been chosen for its construction has been shown in [9]. n

4. WEAKLY ASYMPTOTICALLY SIMPLE AND DE SITTER SPACE-TIMES
WITH SYMMETRIES

In their article [13] Gibbons and Hawking discuss among other things the situa-
tion of an observer, who is travelling in a space-time which is weakly asympto-
tically simple and de Sitter along a time-like curve A which has endpoint p
on £ *. Near p the intersection of I~ (A). the chronological past of A [15], with
a sutficiently extendea space-like hypersurface will have compact support.
Consequently, they argue, there will only a finite amount of energy available
to be radiated through the cosmological event horizon I~ (M) of the observer and
therefore his space-time will eventually approach a stationary state. The follow-
ing result suggests that the space-time of the observer will then in effect become
conformally flat.

THEOREM (4 .1). Assume that on a weakly asymptotically simple and de Sitter
space-time there exists a Killing vector field K which has a time-like integral
curve K that enters each neighbourhood of a certain point p € # . Then a neigh-
bourhood of p in J™(p), the causal past of p in the conformally extended space-
-time, will be conformally flat.

Proof. First a few properties of Killing vector fields on space-times satisfying
the requirements of definition (2.1) will be discussed.

Let X be a Killing vector field on M for £. Then K is a conformal Killing vector
field on M for g=02%3, ie. K, = ng” satisfies (in the notation of chapter 2)
the conformal Killing equations

1
ly = —
ViK + VK — < ViK'g; =U; = 0
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on M. The field K has then a smooth extension to a conformal Killing vector
field on (M_g) which will again be denoted by K. In fact the equations Uoj =0
imply a linear, homogeneous symmetric hyperbolic system of propagation equa-
tions for K]. which yields the smooth extension of K and the remaining equations
U,, = 0 will be satisfied by continuity. Incidentally, this shows that K will vanish
everywhere on D~ (.# *)if it vanishes on .# * everywhere.

For the following it is important that the flow of the field K maps null geo-
desics onto nullgeodesics and that g(K, n') = const along any null geodesic 7 with
tangent vector .

Since K comes from a Killing field on (1l71.§), its flow must map (future) end-
points of null geodesics in (]VI,E), i.e. points of #* onto such points. Thus X is
tangent to whence space-like on £ *. If the integral curve k = k(s) of K has
endpoint p € .#7, then K(p)= 0. However, p is an isolated critical point of the
field K, since along any future directed null geodesic n passing through a point
k(s) one has g(K, n") = const < 0, as at k(s) the field K is time-like.

The following argument will hold in a suitably chosen (non-empty) neighbour-
hood U of p. The set Np =1"(k, U)\{p}is a smooth null hypersurface swept out
by the past directed null geodesics through p. Since p is a fixed point of the flow
of K it follows that K is tangent to Np. The convergence g and the shear 0 (using
now Newman Penrose notation [17] with respect to a pseudo orthonormal frame
I 7, M, m for g such that [ is tangent to the null generators ofN and the frame
is parallely transported in the direction of D of N must vanish (see also {4, 14]
for the argument). It is clear that one has § <0 on Np, since otherwise because
of the equation

4. Dp=pr+65

a caustic would form. Consider now the spherical surface 2 which is the inter-
section of Np with the set of future directed null geodesics emanating from a
point k(s) near p. Since K is timelike on k, the surface 2. will be in the future
of Z_if 5" > 5. Furthermore Z, is mapped isometrically onto Z. by the flow of
K. From this one finds

where dA is the surface element and f a function which is negative everywhere
on Z . This implies that 0 vanishes on Z_ for all large s and hence, by suitable
choice of U, on Np. From equation (4.1) then follows ¢ =0 on Np and from
D& = 2p 0 + ¥, one obtains for the Weyl tensor term
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4.2) ‘I/OE 0 on Np.
Together with (4.2) equation (2.12) implies that J~ (p) is conformally flat near p.

In the spin frame formalism (now with respect to the non-physical metric g)
equation (2.12) reads

(4.3) Vi Papoa =0

where ¢, represénts the rescaled Weyl spinor. To show that ¢, , must vanish

on Np assume that (4.3) is expressed in a spin frame (¢)) such that the vector

a=0,1
corresponding to LOZOI is tangent to the null generators of Np. Once L0000 is then

known on Np, the equation

Voo 1000 ~ Vo' Pooo0 = ~ Vo Pagoo = 0
obtained from (4.3) is an ordinary differential equation (singular at p) along the
null generators of Np. For given ¢,,,, one obtains a similar equation for ¢,100
and so on. It has been shown in detail in [10] that this hierarchy of ordinary
differential equations allows to determine g, ., uniquely on Np ONCe Yy Is given
there. The initial values for g, . at p 1ollow from the reguirement that ¢, .,
represent a smooth spinor field near p. However, equation (4.2) is equivalent to

Poo00 = 0 on Np
whence (4.3) entails
4.4) Vpa=0 on Np

which then must hold for any choice of spinframe. Assume now that (4.3) has
been expressed with respect to a spin frame which is smooth near p. Then (4.3)
implies the linear homogeneous symmetric hyperbolic system

—V{ Prif =0
4.5) —V{ Caport Vi tap1p =0
v/ Po00 f =0.

By a standard uniqueness argument for symmetric hyperbolic systems, which
has been discussed in [8] for the system (4.5) in the notation of chapter 2. it
follows then that (4.4) and (4.5) imply

apabchO on D*(Npu D). L
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