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Abstract.The initial valueproblemfor Einstein~field equationswith positivecos-
mologicalconstantis analysedwheredata are prescribedat pastconformalinfinity.
It is foundthat thedata onpast conformalinfinityaregiven,upto arbitrary confor-
malrescalings,byafreelyspecifybleRiemannianmetricanda trace-free,symmetric
tensorfieldof valencetwo, which satisfiesa divergenceequation.For each initial
data setexistsa unique(semi-global)pastasymptoticallysimplesolution of Ein-
stein ‘s equations.The caseis discussedwherein sucha space-timeexistsa Killing
vectorfield with a time-like trajectorywhich approachesa point p on conformal
infinity. It is shown that in a neighbourhoodof thetrajectory nearp thespade-
-timeis conformallyflat.

1. INTRODUCTION

In this paper will be shown the existenceof a largeclassof solutionsof Ein-
stein’s field equations(2.1) with positive cosmologicalconstantA, which are
asymptoticallysimple in the past.Thesesolutionsare semiglobalin the sense
that all null geodesicsare past complete. The existenceproof is basedon the

propertiesof the regular conformal field equations[7, 8, 9]. They allow to
characterizethe solutionsby their Cauchydataon past conformal infinity ~ —,

which can be thought of as the set of pastendopointsof the null geodesics.In
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the conformallyextendedspace-time5 formsa smoothspace-likehypersurface.

It turns out that on past conformal infinity the constraintsbecomeparticularly
easyto solve and one can give a simple and completedescription of all initial
datasets(basedon conformal infinity) arising from solutionsof Einstein’sequa-

tions which are asymptoticallysimple(Lemma(3.1)).Two factsare remarkable
here. There is no analogue of the Hamiltonian constraint.Consequentlythe
(orientable)manifold 5 and the Riemannianmetric implied on it by the con-
formal field are completelyarbitrary (which appearsto havebeennoticed by
Starobinskybefore [2]). Nevertheless,since for the physical field only the con-

formal equivalenceclass of the conformal initial data on .1 — is relevant, the

freedomto prescribedataonS — is essentiallythe sameas the freedomto describe
dataon a space-likehypersurfacein the standardCauchyproblemfor Einstein’s
field equations.This suggeststhat beingweakly asymptoticallysimple,i.e. posses-

sing <<patchesof a smooth conformal infinity>>, is a rathergeneral featureof
solutionsof Einstein’s field equationwith A> 0.

The problem of showingexistenceof solutionsof Einstein’s equationswith

A> 0 for datagiven on past conformal infinity is similar to the <<pure radiation

problem>> [101 where datafor Einstein’sequationswith A = 0 are prescribedon
a <<regular cone with completegenerators>>representingpast conformal infinity.
However,the former caseis mucheasierto dealwith sinceherethe initial surface

is smooth and space-like.Thus the existenceof solutions of the symmetric
hyperbolicpropagationequationsimplied by the regular conformal field equa-

tions can be inferred from well-known theorems [8, 16]. This immediately
implies the existenceof solutionsof Einstein’s field equations(2.1) which ap-
proachthe datagiven on pastconformal infinity (Theorem(3.2)).

In the last chaptera consequenceof the existenceof certain symmetriesin

the type of space-timeis discussed,whoseexistencehasbeenestablishedbefore.
It is shown (Theorem(4.1)) if a solution of Einstein’sequations(2.1) (A> 0)

which is weakly asymptoticallysimple admits a Killing vectorfield with a time-
-like integralcurve which approachesa point p on S ~, thenthe metricimplied on

a certain neighbourhoodof p in J(p), the casualpast of p in the conformally
extendedspace-time,is conformally flat. This fact, which hasbeenconjectured

and discussed(partly understrong conditionson the space-time)in [1, 2, 3, 13]

is establishedhere by a straightforward applicationof the techniquesused in
chapters2, 3 and in [101.

The results presentedhere allow generalizations.In particular Lemma(3.1).

Theorem(3.2), and Theorem (4.1) can be extendedto the caseof the coupled
Einstein-Yang-Mills equations. Furthermoreit may be pointed out that the
regular conformal field equationsmay be used in a similar way to investigate

the existenceof asymptoticallysimplespace-timessatisfyingEinstein’sequations
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(2.1) with A < 0. In that caseone would have to discussa mixed problem for
the regularconformal field equationswhere dataaregiven on a space-likehyper-

surfaceandon the time-like surfacerepresentingconformal infinity [20].

2. THE CONFORMAL STRUCTURE OF THE EQUATIONS AND OF THE
FIELDS

In the next chapter will be shown the existenceof solutionsof Einstein’s

field equationswith positivecosmologicalconstant

(2.1) Ric[~]=A~

for the <<physicalmetric>>~. In the existencetheoremwill bestatedweak differen-
tiability conditionson the dataand the fields. In this chapter,however,and in

chapter4 will be assumedfor conveniencethatall fields are of classC~.

The existenceproof will be basedon the propertiesof the <<regularconformal

field equations>> [7, 8, 9]. These equations,which are derived from Einstein’s
equationsby exploiting the <<conformal structure>> of the latter, constitutea

slight generalizationof (2.1) since they are regular and make sensein regions
where Einstein’s equationsare no longer defined. If ~ is a positive function,

called the <<conformal factor>> in the following, then one can define a <<non-
-physicalmetric>>

(2.2) g~~=&2
2~

and (2.1) may be expressedequivalently by the <<conformal field equations>>

(2.3) Ric [~2g] = A ~2g.

Denote by V the covariant Levi-Civita derivate operator defined by g~and

a
let ek= e~— (where i, k, 1, - . . = 0, 1, - . . , 4; j.~, ~‘, A, . . . = 0, 1, - . . , 4 and

a ,~
the summationconventionis assumed)be anorthonormalframefor g

(2.4) g(e~,e
1) =~~J= diag(— 1, 1, 1, 1)

given with respectto some coordinatesystemx~.In the following all equations

will be written in a frame formalism andexpressedwith respectto the frameek.
The connection coefficients are then defined by the directional covariant

derivativesof thevectorfields

(2.5) 7kef =Vje~=V~e~,’yj~gf1+7/1gf~—0.

Besides£2,e~,‘i/k the fields which areof interestin thefollowing are:
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— the differential ~k = £
2Merof £2 ands = -~- V~V~2,

the Ricci scalar R, the tracelesspart 2 s
11 = R~1— -~- Rg11 of the Ricci

tensorR~1derivedfromg~,

— the rescaledWeyl tensordjk, = £2~ 1 Cfk, where Ck1 is the Weyl tensorof
g~.

For these fields can be derived from (2.1) respectively(2.3) the following

<<regularconformal field equations>>for theunknown

u = (e, ~/k’ £2,;, s, sf1, dimi)

(2.6) e~PeJ_.-eJ~ e~=(7)k_~f)e/
1

+ 7km71 71m7~ n~~’ ~ =

(2.7)

= £2dfk, + 2(g’~~S
1]J gf[~s1J) + —Rg~g111

(2.8) V1&2 =;

(2.9)

1 1
(2.10) Vs = — ~ — — R ~. — — £2 V.R

‘ 12 1 24

(2.11) Vkslj—Vlsk/=~~dJkl—j-~g111V~R

(2.12) V~dJkl=O.

Theseequationsare obtainedin the following way. Equ. (2.6) is the first structure

equationwith the conditionthat the torsionvanish,while equ.(2.7) is the second
structureequationwhereon the right the curvaturetensoris expressedin termsof

its irreducible parts. Equ. (2.9) is the trace-freepart of (2.3). Equ. (2.12) is
obtained by rewriting the Bianchi-identity for the <<physical Weyl-tensor>>,

= 0, which is implied by (2.1), in termsof the non-physicalquantities.
Thenequ.(2.11) is derivedfrom theBianchi identity for the non-physicalcurva-

ture tensor by using (2.12). Finally, equ. (2.10) is an integrability condition
derivedform (2.9) andthe otherequations[7].

There are severalaspectsof the regular conformal field equationswhich de-

servefurther discussion.
Since the unknownu doesnot comprisethe Ricci scalarR the systemappears

to be underdetermined.However,the relation (2.2) and consequentlyequations
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(2.6) -(2.12)are invariantunderrescalingsof thetype

(2.13) (&2,g)—~.(~2,~)=(O~2,O
2g)

with a positive function 0, if all quantitiesgiven by u andalsoR aretransformed

appropriately (see (3.16)). This introduces,besidesthe possibility to choose
coordinatesand frame fields arbitrarily, anadditional<<gauge-freedom)>.It allows

to determinenear a suitable initial surfacethe conformal factor in such a way
that the Ricci scalaracquiresthere any preassignedfunctional dependanceR =

=R(x~)on the coordinatesx~[9]. Thus the Ricci scalarRmayin (2.6) -(2.12)
be consideredas an arbitrarily given function on JR’~and thesystem(2.6) -(2.12)

as an overdeterminedsystemof partial differential equationsfor the unknownu.

Let now u be a smoothsolution of (2.6) -(2.12) (satisfying det (e,~):�rO)ona

connectedmanifold M and denoteby M the opensubmanifold{ x EM/&2 (x) > 0)

of M. On M can be definedfrom u a metric be requiringj~(~2 2g~l~e~’~e~)=

= ~. In the regularconformal field equationsthecosmologicalconstantdoesnot

appearsincethe traceof (2.3) hasnotbeenusedin the derivationof(2.6) - (2.12).

Thereforeone may wonder,whetherthe metric will be a solution of Einstein’s
equations(2.1). By taking thedifferentialof thequantity

(2.14) A’=6&2s—3~.~’+—£22R

and usingthat u is given by a solution of (2.6) -(2.12) one finds that A’ = const
on each connectedcomponentof M. Identifying the cosmologicalconstantA
with A’, equation(2.14) is just the trace of (2.3). Thereforeone arrivesat the

fact: Anysolution of Einstein’s equations(2.1) implies a solution of the regular

conformal field equations (2.6) -(2.12). Any solution of the regular conformal

field equationson a manifoldM provideson thesubmanifoldM ={ x EM/&2(x)>

> 0 } a solutionofEinstein’sequations,wherethecosmologicalconstantis obtain-
ed as a constantof integration whichmay befixed on a suitableinitial surface.

The regular conformal field equationsgeneralizeEinstein‘s equationssince they
are definedand regular for all valuesof the conformalfactor, in particular at
pointswhereit vanishes.

It is of coursethe latter propertywhich motivatedthe introductionof thecom-

plicated system(2.6) - (2.12) as well as its name.Thoughit is alreadysurprising

that Einstein’s equationsallow such a generalization,the system(2.6) -(2.12)
can only consideredus useful if it allows to drawconclusionsaboutit manifold
of solutions.Forthis it is decisivethat one canshow:The regular conformalfield

equationsimply symmetrichyperbolicsystemsofpropagationequations.
There are various ways of extractingsuchpropagationequationsfrom (2.6) -



106 H. FRIEDRICH

(2.12), dependingon the choiceof coordinates,frame field andconformal factor.

This has beendiscussedin [7, 8] and in all possiblegeneralityin [9]. Initial value
problems for equs.(2.6) - (2.12) may thusbe reducedto initial valueproblems

for symmetric hyperbolic systems.Thesesystemshavebeenstudiedextensively

and verygeneralexistenceresults are available [6, 11, 16]. It may be mentioned
finally, that it is possibleto generalizethe derivation given above,e.g. to obtain
for the coupled Einstein-Yang-Millsequationsregular conformal field equations

which also imply symmetrichyperbolicpropagationequations.
The conformal structureof Einstein’sequationsexhibitedby the propertiesof

the regular conformal field equationsexactlymatchwith thecharacterizationof
the asymptoticbehaviourof gravitationaltields in terms of conditionson their
global conformal structure[181. The space-timeswhich are of interest in the

following are describedin the

DEFINITION (2.1). A connected, time- and space-orientablestrongly causal

space-time(A~,~) will be calledasymptoticallysimplein the past, if thereexists
a manifold M with boundaryS — (C M), a smoothLorentz metricg and a func-

tion £2 on M, and an embedding0 : M -* M, by meansof whichM is identified
with its image~ (M) = M \ S - suchthat

i) £2>0onM,~Z=0onS,d~2�0onJ,

ii) g=~2
2,~onM,

iii) every null geodesicin (M, ~) has(only) a pastendpointon 5.

The space-time(M,~) will be called asymptotically simpleand de Sitter in the

past if it satisfiesin additionto (i) - (ii)

iv) on M Einstein’sequationsRic [~] = A ~ holdwith a cosmologicalconstant
A>0.

These requirementshave, among others, the following consequences[18].
All null geodesicsof (M,~), which as point sets coincidewith null geodesicsin
(M,g), are past complete.The gradientof £2 is timelike on 5(see equ.(2.14)).
Thus the surfaceS —‘ called <<past conformal infinity>> in the following, is a

space-likehypersurface,which becauseof condition (iii) is in fact a Cauchy
surface for the conformal extension(M, g) of (M,~)[12]. The physical Weyl

tensor obtainedfrom ~, which coincideson M with theWeyl tensor
for ~ goesto zero along anycurve mM which approaches5~.(Seeequ.(2.12)).
Becauseof this property it may be assumedthat the rescaledWeyl tensor

1 ~ extendsto a smoothtensorfieldon M.
i’Xp

In a similar way as aboveone can define space-timeswhich areasymptotically

simple and de Sitter in the future with future conformal infinity 5 + or which
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satisfy theseconditionsin the pastas well as in the future. The prototypeof all

these cases in de Sitter space.It can as a whole be conformallyembeddedinto
the Einsteincosmoswhich is given by the manifoldJR x ~3 with theline element

(2.15) ds2=—dt2+dw2

with t E JR and dw2 the standardline elementon ~3 If onedefinesthe function

r(t) by

IT IT
sinhr=tgt, ——<1<—

2 2

andthe conformal factorby

iT ii
£7=cost, ——

2 2

~r
then one has on M = I — — — i x s3 in termsof the coordinater the de Sitter

2 2[

line elementgiven by

(2.16) d~2= £22ds2= — dr2 + cosh2‘r dw2.

Thus the conformally extendedspace-time(M, g) is given by the closureof M

in the Einsteincosmostogetherwith the line element(2.15).The surfacesfl=

= t = — -~- resp. = ~t = -~- representpast resp.future conformal infinity.

The purposeof condition (iii) is to make surethat nothingofSis left out in

the constructionof the conformally extendedspace-time.In the casethat the

manifold M has a compactCauchy surfaceS (which appearsto be a natural
assumptionfor a solution of equ. (2.1) with A> 0, since thereseemto be no
naturalconditions on the behaviourof the field <<at spatial infinity>>) such that

is diffeomorphic to JR x 5, condition(iii) allows to concludethat5 is diffeo-

morphic to S and the conformally extendedspace-timeis diffeomorphic to
[0, oo[ x S. However there are space-time,called<<weakly asymptoticallysimple

and de Sitter>> [19], for which the conditions(i, ~ iv) canbe satisfiedbut (iii)
doesnot hold becausesome null geodesicsrun into singualnties.Thus one can
only attach certain <<pieces of a smooth conformal infinity>> to the original
space-time.An example for this is provided by the Schwarzschild- de Sitter
space-timeandits analyticextensionswhichhavebeendiscussedin [13].
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3. EXiSTENCE AND CHARACTERIZATION OF SPACE-TIMES WHICH ARE
ASYMPTOTICALLY SIMPLE AND DE SITTER IN THE PAST OR IN THE
FUTURE

In the following will be investigated the set of space-timessatisfying the

conditions (i) - (iv) of definition (2.1) by analysinga Cauchy problem for the

regular conformal field equations(2.6) - (2.12), wheredataare given on a space-

-like hypersurfaceS in the conformally extendedspace-timeM. For this purpose
suitable initial data sets, i.e. solutions of the constraint equationswhich are
implied on space-like hypersurfacesby the regular conformal field equations,

haveto be determined.

Assumethat the conformal factor £2 hasbeenfixed somehow.Let the coordi-
natesx

0, xa and the framevector fields e
0, ea (in this chapterindices a, j3

a, b, - . - will take values1, 2, 3 and the summationconventionwill be assumed

for these indices) satisfying (2.4) be such that S = { x°= 0), e0 is the future
directed unit normal to S so that the xa provide coordinateson S and ea an
orthonormalframe for the interior metric implied on S.To extendthe frameand
the coordinatesinto a neighbourhoodof S it is assumedfurthermorethat the
frame e,, is parallely propagatedin the directionof e0, x

0 is a parameterof the

integralcurvesof e
0 andthex~are draggedalongwith e0:

VOek=O, x~ec~=&~ onMnearS.

The coordinatesxMare thusGausscoordinatesbasedon S.Onefinds

a a
e=— e=e~—0 ax° a ~ ax~

70k = = ‘Y~’IJ= Xab is thesecondfundamentalform on S.

Let D denotethe covariantLevi-Civita derivativeoperatorimplied on S by the
interior metricinducedon Sby g~.Thenonehas

Daeb =De eb ~~abec,

with the y’s given by (2.5) and the torsion 3t~ for D vanishes.The curvature
tensor, the Ricci tensor,and the Ricci scalarderived from D will be denoted
by 3r~Cd,3rab, 3r respectively.TheBachtensoron S is thengivenby

3bcab = D
1 rblC — — D1

3r

To obtain simple expressionsfor the constraint equationsit is convenientto
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introducethe notation

= ~o’ 5a = ~a0’ dab = dQbO, dabc= da0bc~

Thesefields on Shavethe algebraicproperties

= ~, dab = dba~ d~= 0, dabc= — dacb~ dlObCJ= 0

= 0, deabC= 2(ge
1bdcia +g~1~d~]~)

andcontainall theinformation on andd~,kl.
The constraint equations implied on S by equs.(2.6)-(2.12) aregiven now by

rabc = — 2x~Xcla + £2 dbC + — R +

(3.1)

+ ~

(3.2) DbXca_DcXba= £
2dabc+ 2g~(~s~J

(3.3)

(34)

(3.5) ~ = ~CXca_,c~zsa

1 1
(3.6) Da5=~25a_~C5ca_—R~— — £2DR

12 24

(3.7) Dsb DbSa= 2XIaCSbIC +

(3.8) Dsb—Dbs = 2Xcta5bl+~db + ~e~j + —

(3.9) D
0d~~=2dCtbX~]

(3.10) Dd~= XeI~1ebf.

Furthermore(2.14) givesthe equation

(3.11) A=6~5+3~
2_3Ea~a+— £22R

which is implied on Salso by (3.1) -(3.10).
As the initial surface is now chosenthe surfaceS = 5. Then the constraint

equations(3.1) -(3.11) simplify enormouslysince £2 vanishes.An initial data
set maythen theobtainedin the following way:
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LEMMA (3.1). Let (5, h) be a connectedorientable 3-dimensionalRiemannian

space with manifold S and metric h tensor on S. Let R and T be real-valued
functions on S and A a positive number. Furthermore let d~be a symmetric

tracefreecovariant tensorfield on Sdatisfying

(3.12) D0d~=0

where D denotes the covariant Levi-Civita derivative operator defined by h.
From thesefieldsan initial dataset

u0 = (er, ‘~fk, £2, ~, ~~~1/~ cl~/kl) on S

for the regular conformal field equations(2.6) -(2.12) which satisfies(2.14)
with A = A’ on S is determinedasfollows.

Let c = Ca —~— be a (local) frame given with respect to some(local) co-
a a axa

ordinatesystemx on Ssuchthat

h(ca,cb) ~ab diag(l, 1,1)

and let be the connection coefficients satisfying

DCb =D~Cb =

Furthermoredenoteby
3Rab~3R, 3BCab the Ricci-tensor, the Ricciscalarand the

Bachtensorobtainedfrom h. Thenu
0 isgivenby

(3.13) ~ e~=0, e=c~’, ‘y~~=F~

~ 1/2
£2 = 0, ~ = 0, s = r — Aa

(3.14) 1 1/2

~

1 1
s~=

3R~—g~—3R+ —R——r2a a a 24 2

(3.15) ( 1 —1/2
dOobc= — A 3Bb

d —d c0~c~aObO a~3a b

Proof Equs. (3.13) follow from the precedingchoiceof the coordinatesand the

frame. Assuming that the cosmologicalconstantis given by A, that £2 = 0 on S
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1 1/2
and setting s = ‘r -~ A , equs.(3.14) are a consequenceof and imply equs.

(3.3), (3.11), (3.4), and (3.6). The equs. (3.2), (3.5), (3.7) are then satisfied

identically. Using the fact that in a 3-dimensionalspace the curvaturetensor
is determinedby the Ricci tensorvia the idenity

3r —2~ ~ + 3r ~+3r
abcd \~~

1crdlb ~ CIa’ ~

the remainingconstraintscanbe written equivalently

(3.1’)
3rQ~=s~+g~~s~+—R—2r2

6

(3.8’) db = 2~13b

(3.9’) DCdb = 0

(3.10’) D~d=0.

Hence(3.1’) and (3.8’) may be solved by usingthem as defining equationsfor

Sab and dcab~Then (3.9’) is just the differential identity satisfiedby the Bach

tensor.Finally, (3.10’) is equivalentto (3.12). •

Remarks

i) The functions (3.13) dependof course on the specific choiceof the co-
ordinatesand the frame. The presentchoice gives immediately the appropriate

data for the symmetric hyperbolic equationsas derived from (2.6) -(2.12) in

[8] for the caseof a conformal factor such that R = 0 nearthe initial surface.
Important here is the way the metric h with h~= gabea°~e~and the tensorial

quantities(3.14), (3.15) are determined,which is independentof any choice

of gauge.
ii) It is remarkablethat the dataon past conformal infinity for any space-

-time which is (weakly) asymptoticallysimple and de Sitter may be obtained
as describedin Lemma(3.1). While in the standardCauchyproblemfor Einstein’s
equationsthe Hamiltonian constraintleadsto an elliptic equation,an analogous
equationdoesnot occur here.The only differentialrelation is equation(3.12),
which maybe consideredas an analogueof the momentumconstraint.

iii) If the coupled Einstein-Yang-Mills equationsare transformed into a
regular conformalsystem,the initial datau

0 on 5 for the geometricalquantities

can be. with the exceptionof da~~determinedin the sameway as above.If then
a solution of the constraintsimplied by the Yang-Mills equationson Jhas been

found, an equation for d~has to be solvedwhich is of the form (3.12) with a
right memberwhich is a quadraticexpressionof the Yang-Mills fields.
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iv) At first sight it may appear that there is too much freedom here to specify

initial data for the gravitationaltield [5]. This, however, is not the case. Under

the rescaling(2.13) the Ricci scalarR = R[gJ is transformed into the Ricci scalar
R = R [0

2g] accordingto

(3.16) V V~0= — (OR —03R).
6

As mentionedin the beginning this allows to choosethe Ricci scalarR freely

nearthe initial surface.Whenequ. (3.16) is then solved for the function 0 there
is still the freedom to specify a positive function 0 and an arbitrary function,
the normal derivative V

00, on the initial surface. On the surface S —, where

£2 = 0, thequantity r = ~ transformsunder(2.13) accordingto

(3.17) O
2~=Or~—V

0O.

This shows that for arbitrarily given positive 0 the function V00 can be chosen

such that i takesany preassignedvalue on the initial surface.In particularone
may chooser=0, R ~0 in (3.14),(3.15).There remainsthe freedomto choose

0 on S. If the fields h d on Sarerescaledin the form

(3.18) h -+h =0
2h d -÷d =0’da~3 a>3 a~ a13

equation(3.12) will again be satisfiedby the transformedfields. From h and d
may be derivedan initial dataset asdescribedin Lemma(3.1)with R, ~given
arbitrarily and with the sameconstantA. The initial datasetsu

0, i~will thenbe

called conformally equivalent. As statedin Theorem (3.2) they will determine
isometricsolutions of Einstein’sequations(2.1).

Let (5, u0) be an initial dataset as determinedin Lemma(3.1) wherethemani-
fold S is now assumedto be compact.A manifoldM with boundary..~ - together
with a collectionu = (er, . . . , d111~~)of fields on M will be called a solution of
the initial value problem for the regular conformal field equationswith initial

dataset (S, u0), if M is diffeomorphic to S x [0, T[ for some T> 0, u is a solution
of equations(2.6) - (2.12) on M, the function £7 is positive on M excepton the

boundary S —, and thereexistsanembeddingof S into M by which S is identified
with the boundaryS — of M in such a way that the fields given by u0 coincide
(possiblyaftera rotation of the frame)with the fields implied by u on S -.

In this formulation it has been assumedfor convenience,that the frame Ca

introducedon S in Lemma(3.1) and consequentlythe frame e,,~is given globally

on S resp.M. The definition hasto begeneralizedin anobviousway if morethan
one frame is involved in the constructionof the initial dataset.
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If k is an integer > 0, let Hk(S) resp. H”(M) denote L2-type Sobolev spaces on

S resp. on M. Here H”(S) is defined with respect to the bilinear product of tensor
fields of the same type and the measure implied on S by some fixed Riemannian
metric and H”(M) is defined in a similar way by using the product metric implied
on S x [0, T[ by the given metric on S and the standardmetricon JR.

THEOREM(3.2). Supposek ~ 4 and (5, u
0) is an initial data set as determined in

Lemma(3.1) with a smoothand compactmanifold S and with fields provided

by u0 on 5, which are of class H”(S). Thenthereexistsa unique(up to questions
of extensibility) solution (M, u) of the initial value problem for the regular
conformal field equations (2.6) -(2.12) with initial data (S, u0), such that the
fields supplied by u are ofclassH~c(M).

In particular the conformal factor £7 and the metric g~provided by u are of
class Hk(M). The space-timewith manifoldM=M\fland metric~ =

is a solution of Einstein ‘sfield equations

Ric [~] = A~ (with A> Oasgivenby u0)

which is pastasymptoticallysimple.
The isometry class of the space-time(M, ~ determinedfrom (S,u0) is not

changedif the initial data set (S,u0) is replaced by a conformally equivalent

initial data set.

Remarks

i) As seen from Lemma (3.1) for the fields given by u0to beof classH
1’ it is

sufficient that the metric h is of class Hk + ~, the field d and the function R are of

class H” and the function r is of class H” + No attempt has been madehereto
formulate the strongest possible results regarding differentiability (see [6]).

ii) The assumption that the manifold S be compact has been made here to
simplify the statementof the theorem.For more generalsituations,correspond-

ing to space-timeswhich may form a part of a weakly asymptoticallysimple
space-time,a similar existencetheoremcan be formulated which involves local
Sobolevspaces.

iii) It is a remarkablefact that all space-timessatisfyingthe conditionsof

definition (2.1) can be obtainedin a similar way as describedin Lemma(3.1)

andTheorem(3.2) and that the degreeof freedomto specify initial dataat past
(or future) conformal infinity is essentially the same as in the case of the standard

Cauchy problem for Einstein’s field equations.

ProofofTheorem(3.1). Using the standard method of localizationfor symmetric

hyperbolicsystems,the existencepart follows by taking a finite coveringof Sby
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coordinatepatcheswhich carry an orthonormal frame for the metric h and by

constructinglocal solutions. Applying a generaltheoremof Kato [16] on the
Cauchy problem for symmetric hyperbolicsystemsto the symmetric hyperbolic
propagationequationsimplied by equations(2.6) -(2.12) the existenceof local

solutions can be established.This has beenworkedout in detail in [8] where it
also has been shown that a solution of the symmetric hyperbolic propagation
equationswhich solves the constraintequationson the initial surfaceis in fact

a solution of (2.6) -(2.12). That the isometry classof the physical space-time
(M, ~) does not dependon which elementof the conformal equivalenceclassof

initial datasetshasbeenchosenfor its constructionhas beenshownin [9]. U

4. WEAKLY ASYMPTOTICALLY SIMPLE AND DE SITTER SPACE-TIMES

WITH SYMMETRIES

In their article [13] GibbonsandHawkingdiscussamongotherthingsthe situa-
tion of an observer,who is travelling in a space-timewhich is weakly asympto-

tically simple and de Sitter along a time-like curve A which has endpoint p

on St Nearp the intersectionofI(A). the chronologicalpast of A [151, with

a sutticiently extendeci space-like hypersurfacewill have compact support.
Consequently,they argue, there will only a finite amount of energy available

to be radiatedthroughthe cosmologicaleventhorizon1 (A) of the observerand
thereforehis space-timewill eventuallyapproacha stationarystate.The follow-

ing result suggeststhat the space-timeof the observerwill thenin effect become
conformallyflat.

THEOREM (4.1). Assumethat on a weakly asymptoticallysimple and de Sitter
space-timethere exists a Killing vectorfield K which has a time-like integral
curves~that enterseachneighbourhoodof a certain pointp E S ~. Thena neigh-

bourhoodof p in J(p), the causal pastof p in theconformallyextendedspace-

-time, will be conformally flat.

Proof First a few propertiesof Killing vector fields on space-timessatisfying

the requirements of definition (2.1) will be discussed.
Let K be a Killing vector field on M for ~. Then K is a conformalKilling vector

field on M for g = £72~,i.e. K~=g~K’~satisfies (in the notation of chapter 2)

the conformalKilling equations

V~K1+~K1——V,K’g,1~~1=0
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on M. The field K has then a smoothextensionto a conformal Killing vector

field on (M g) which will again be denoted b~,rK. In fact the equationsU
01 = 0

imply a linear, homogeneous symmetric hyperbolic systemof propagationequa-
tions for K1 which yields the smoothextensionof K and the remainingequations
Uab = 0 will be satisfiedby continuity. Incidentally,this showsthatK will vanish

everywhereon D (St) if it vanisheson S + everywhere.
For the following it is important that the flow of the field K maps null geo-

desics onto nullgeodesics and thatg(K, ii’) = constalong any null geodesici~with

tangent vector ?~‘.

Since K comesfrom a Killing field on (M,~),its flow must map (future) end-

points of null geodesicsin (M,.~),i.e. pointsof S~onto such points.Thus K is
tangent to whence space-like on S ~. If the integral curve I~= K(s) of K has
endpoint p E .5, then K(p) = 0. However, p is an isolated critical point of the
field K, since along any future directed null geodesic i~passingthrough apoint

k(s) one has g(K, i~’) = const < 0. as at s(s) the field K is time-like.
The following argument will hold in a suitably chosen (non-empty) neighbour-

hood U of p. The set N~= I(~, U) \{p } is a smoothnull hypersurfacesweptout

by the past directed null geodesics through p. Since p is a fixed point of the flow
of K it follows that K is tangentto N~.The convergence ~ and the shear ~ (using
now Newman-Penrose notation [17] with respect to a pseudo orthonormal frame
1, ~, th, r~i for ~ such that us tangent to the null generators of N~and the frame

is parallely transported in the direction of 1) of must vanish (see also [4, 14]
for the argument). It is clear that one has ~ ~ U on since otherwise because
of the equation

(4.1)

a caustic would form. Consider now the spherical surface which is the inter-
section of N~with the set of future directednull geodesicsemanatingfrom a
point s(s)nearp. SinceK is timelike on K, the surface . will be in the future
of if s’ >5. Furthermore is mappedisometrically onto . by the flow of

K. From this one finds

d( (
0=— I dA=J f~dA

dsJ J

where dA is the surfaceelementand f a function which is negative everywhere
on . This implies that ~ vanishes on for all large s and hence, by suitable
choice of U, on N~.From equation (4.1) then follows ~ on N~and from
D~5= 2~&+ ‘I’~oneobtainsfor theWeyl tensorterm
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(4.2) ‘I’0E0 on N~.

Togetherwith (4.2) equation(2.12) implies that7(p) is conformallyflat nearp.
In the spin frame formalism (now with respect to the non-physicalmetric g)

equation(2.12) reads

(4.3) V: ‘~abcd=°

where ~abcd representsthe rescaledWeyl spinor. To show that mustvanish

on N~assume that (4.3) is expressedin a spin frame
0a~a= 0, such that the vector

corresponding to is tangent to the null generatorsof N~.Once is then
known on the equation

Vc~.pi~~Viop~ = —V~.p~ = U

obtainedfrom (4.3) is an ordinary differential equation(singularat p) alongthe

null generatorsof N~.For given ~ one obtainsa similar equation for
and so on. It has been shown in detail in [10] that this hierarchyof ordinary

differential equationsallows to determine‘~abcduniquely on I’1~,once is given

there. The initial values for at p tollow from the reguirementthat ~~abcd

represent a smoothspinor field nearp. However, equation(4.2) is equivalent to

on N~

whence (4.3) entails

(4.4) ~abcd0 on

which then must hold for any choiceof spinframe.Assumenow that (4.3) has
beenexpressedwith respectto a spin frame which is smoothnearp. Then (4.3)
implies the linearhomogeneoussymmetrichyperbolicsystem

=0

(4.5) _V~OabOf+V1~Oablf=0

=0
1~000f -

By a standarduniquenessargument for symmetric hyperbolic systems.which
has been discussedin [8] for the system(4.5) in the notation of chapter2. it

follows then that (4.4) and (4.5) imply

“~abcd° on D(N~U p).
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